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Working memory is a system that maintains and manipulates

information for several seconds during the planning and

execution of many cognitive tasks. Traditionally, it was believed

that the neuronal underpinning of working memory is stationary

persistent firing of selective neuronal populations. Recent

advances introduced new ideas regarding possible

mechanisms of working memory, such as short-term synaptic

facilitation, precise tuning of recurrent excitation and inhibition,

and intrinsic network dynamics. These ideas are motivated by

computational considerations and careful analysis of

experimental data. Taken together, they may indicate the

plethora of different processes underlying working memory in

the brain.
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Introduction
Working memory is a crucial component in the execution

of many cognitive tasks that require holding and manip-

ulating information for short periods of time (see e.g., [1]).

In this review, we will focus on the holding of information

for a time period of several seconds. From the mechanistic

point of view, working memory differs from long term

memory in that no structural changes are hypothesized to

be involved – it is a transient phenomenon. Models of

working memory are presented with two types of chal-

lenges: data-driven and computational-driven (Figure 1,

middle). The data-driven challenges arise from the

analysis of behavior and neuronal recordings in animals

performing working memory tasks. Animals were shown

to be able to maintain several items simultaneously in

memory, remember their order, and manipulate them

(see e.g., [2] for a recent account). Among the common

physiological observations, it was reported that neurons

typically exhibit irregular firing activity at a low rate, the
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activity related to storing a fixed item is not stationary,

and there is a large heterogeneity in the firing profiles of

different neurons [3,4,5�,6]. From the computational side,

the network activity representing a memorized item

should exhibit a sufficient degree of stability to ensure

memory retainment. This requirement is especially chal-

lenging for storing continuous variables, such as orien-

tation or spatial position of a visual cue, because of an

inevitable drift along the variable’s representation.

Furthermore, integrating the various data-driven chal-

lenges in a self-consistent manner is often a non-trivial

computational problem.

To cope with these challenges, various models incorpor-

ate different amounts of biophysical detail – highlighting

the contribution of model elements to the various chal-

lenges (Figure 1, right). In the current review, we will

briefly present the classic models of working memory, and

proceed to highlight several recent attempts at addressing

the different challenges. The focus of this review is on

network mechanisms of working memory. For alternative

mechanisms based on single cells persistent activity see

[7,8].

The classic models
The classic view is that items are embedded in long term

memory via specific synaptic modifications, and presen-

tation of these items leads to activation of stable activity

patterns in the network (‘attractors’) [9,10]. Thus the

information on which item is currently in working mem-

ory is stored in the persistent firing of these attractors.

Supporting this theory, neurons exhibiting persistent

activity after the removal of a stimulus were observed

in the inferior temporal and prefrontal cortices of mon-

keys [11,12] (Figure 1, left).

Multi-item memory
The majority of foundational work on models of working

memory were motivated by delayed memory exper-

iments where only one item had to be retained in memory

[11,13,14]. Working memory, of course, is not limited to a

single item [15], and accordingly electrophysiological

recordings were done on monkeys performing tasks

requiring the maintenance of several items in working

memory [12]. The mechanistic challenge of maintaining

more than one item arises due to interference between

the activations of the different items. Amit et al. [16]

proposed that such interference is reduced when items

are encoded by sparse patterns – every item is

represented by a small fraction of the neuronal popu-

lation. This approach was extended by [17] to account for

the storage of both learned and novel items.
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Concepts in working memory models. Left: the classic account of working memory is that a strong recurrent excitation enables the network to sustain

persistent activity after removal of a transient stimulus. Middle: models of working memory face challenges on computational and data-driven fronts.

Right: current models of working memory introduce various biophysical considerations to cope with the challenges, while attempting to remain simple

enough to understand.
Both inhibition [18] and excitation [19] were shown to

influence the capacity of multi item working memory. In

both of these works, the authors showed how a network

storing a continuous value can be dynamically partitioned

to maintain several localized bumps of activity, each

representing one memorized value of this variable.

The balance of excitation and inhibition determines both

the number of items that can be held, and their mode of

failure (fade out or merge). Continuous attractors

required tuned connectivity, but this tuning can be

relaxed by incorporating more biological detail into the

model. Specifically, Rolls et al. [20] showed that synaptic

facilitation (detailed in the next section) increases the

capacity of working memory. Moving beyond capacity

considerations, Dempere-Marco et al. [21] showed that

salient items (those presented with higher intensity) can

be guaranteed a higher chance of maintenance at the

expense of less salient items.

A conceptually different method of holding multiple

items in working memory is to multiplex them in time

rather than in space [22,23]. In this approach, the acti-

vated items are all oscillating at some frequency in

different phases, and capacity is determined by the ratio

of this frequency to the temporal width of each activation.

In principle, this method can store information about the

order of the items as well as their identity.

Effects of NMDA receptors on persistent
activity
Early network models of persistent activity used a highly

simplified description of neuronal and synaptic dynamics,

resulting in certain difficulties in reproducing a realistic

range of firing rates during working memory [24]. As

first pointed out by [25], this issue can be resolved by
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considering networks with slow recurrent excitatory cur-

rents that are reminiscent of NMDA currents. Indeed, it

was recently reported that blocking NMDA, but not

AMPA, receptors during a working memory task

abolishes persistent activity in prefrontal neurons [26�].
Moreover, the relative efficacy of NMDA currents is

sensitive to Dopamine modulation, thus providing a

possible mechanism of regulating working memory

[27]. In particular, strengthening NMDA currents during

the delay period of memory tasks can enhance the robust-

ness of persistent activity to intervening stimuli. More

intriguingly, NMDA currents can also affect the temporal

aspects of neuronal activity, for example, by enhancing

the burstiness of firing, thus potentially mediating the

more complex forms of persistent activity compared to

simple steady-state asynchronous states [27].

Short term synaptic plasticity
The model of [20] mentioned above relied on the slow

timescale of synaptic facilitation to stabilize the persistent

firing state (see also [28]). Synaptic facilitation, and other

forms of short term synaptic plasticity, enable synapses to

temporarily modify their efficacy in response to stimuli

[29,30]. Recently, Itskov et al. [31] examined the effect of

synaptic facilitation on a network storing a continuous

variable via the ‘line attractor’ mechanism, that is, a

continuous one-dimensional set of marginally stable

activity states, and showed that facilitation reduces the

inherent drift of the system, thus prolonging memory

lifetime significantly.

A more dominant role for synaptic facilitation was

suggested by Mongillo et al. [23], who proposed that a

stimulus-selective pattern of synaptic facilitation can

itself maintain working memory in the absence of
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increased spiking activity. In this scenario, neuronal

activity is only required when information is extracted

from synaptic into spiking form at the end of the delay

period. Thus, synaptic facilitation does not stabilize per-

sistent firing activity, but replaces it. This property of the

model is compatible with the analysis of the neuronal

recordings from the Romo lab, showing that overall

activity in the prefrontal cortex exhibits significant

reduction over the course of delay period, slowly recover-

ing to the pre-stimulus level towards the presentation of

the second stimulus [3]. A recent model utilizing gating

neurons instead of synapses has some functional sim-

ilarity to this idea [32].

Finally, synaptic facilitation does not only bestow the

network with slow timescales, but it also provides a

nonlinear relation between the presynaptic firing rate

and postsynaptic currents [33]. Hansel and Mato [34�]
demonstrated that this nonlinearity is crucial for a net-

work to display persistent activity with realistic spiking

statistics. Specifically, it is known that neurons fire in a

highly irregular manner, and this phenomenon was

explained by a fluctuation driven regime where excitation

and inhibition balance each other [35]. This balanced

state, however, is characterized by a linear input–output

transformation of firing rates that precludes the bistability

necessary for many working memory models. By incor-

porating synaptic facilitation into a balanced network,

Hansel and Mato [34�] showed that bistability is restored,

and their model exhibits realistic spike firing in the

persistent state.

Excitatory/inhibitory balance
Besides guaranteeing irregular spiking activity, the inter-

play of excitation and inhibition can stabilize working

memory as demonstrated by several recent models.

McDougal (PhD Thesis, Ohio State University, 2011)

studied a model of excitatory and inhibitory populations,

where an arbitrary subpopulation of the excitatory

neurons can maintain elevated firing rates after a transient

stimulus. Interestingly, there is no excitatory feedback,

but rather these cells activate inhibitory neurons which in

turn inhibit the excitatory population. Persistent firing is

enabled due to a post inhibitory rebound current (Ih).

This current is Calcium dependent, and hence only the

previously active excitatory cells have an elevated

calcium level, serving as an identifying tag and prolonging

their firing. This E–I–E loop creates a gamma frequency

signature during memory maintenance. A similar mech-

anism was demonstrated experimentally in LP neurons of

pyloric network of the crab Cancer borealis in [36].

Two recent results demonstrate that fast inhibition fol-

lowed by matched slower excitation can stabilize the

memory of a continuous parameter. Boerlin et al. [37��]
considered the implications of encoding abstract variables

using a population of spiking neurons. They assumed that
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every spike is only emitted when it improves the decoding

accuracy of an encoded variable. The resulting activity is

highly irregular and yet the overall population can accu-

rately represent the variable (a similar idea was explored in

[38], but firing rate rather than precise timing of spikes was

used as the information carrier). In order for the network to

function, fast recurrent inhibition is needed to notify the

entire network every time a neuron spikes, so that the same

prediction error will not be corrected twice. The dynamics

of the abstract variable itself are managed by slower,

excitatory, connections that are matched in strength to

the inhibitory ones. Lim and Goldman [39��] proposed a

similar mechanism from a different perspective. The

authors argued that in order to reduce the drift of a

memorized variable, a friction-like term should be added

to the dynamics. Thus, they suggested that negative

derivative feedback could stabilize the memory. In order

to implement this idea in the neural network, they noticed

that fast inhibition followed by balanced slower excitation

produces a signal that is proportional to the negative

temporal derivative of the population activity.

Dynamic mechanisms of memory
The obvious candidate for storing a fixed item in memory

is a fixed state of the network – in the simplest case the

persistent activity of neurons [40]. A closer look at the

data, however, reveals that the activity of typical cells

rarely adheres to this concept of persistent activity. The

information stored in populations of prefrontal neurons

seems to decline and reappear during the delay period

[3,4]. The tuning of neurons to stimuli changes from the

stimulus to the delay periods [3,5], and in general the

activity of neurons is more heterogeneous than predicted

by most models [6]. These observations triggered new

theoretical ideas regarding the mechanisms subserving

working memory. One solution, mentioned above, is to

rely on other biophysical processes as the state of the

system [23] (McDougal, PhD Thesis, Ohio State Uni-

versity, 2011), but in those cases as well this state is a fixed

point (or limit cycle) of the system.

An alternative view is that memory of an item could be

maintained by highly non-stationary activity, as illus-

trated by the framework of reservoir computing [41,42].

In this framework a stimulus impinges upon a randomly

connected network, eliciting some trajectory in state

space. Recurrent connectivity enables this trajectory to

last for substantial time before the network returns to

baseline. During this time, the memory can be decoded

from the activity of the network.

The plausibility of such a mechanism depends on the

temporal capacity of the network – the duration in which

the stimulus can be decoded. This capacity has most

often been numerically and analytically studied by inject-

ing white noise into the network and checking the

amount of information present in the current state of
www.sciencedirect.com
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the network about the past values of the stimulus. Results

from considering linear [43,44] and nonlinear networks

[45,46�,47�,48], in discrete and also continuous [49] time,

have shown that the memory of completely random net-

works only scales logarithmically with network size while

a structured (generally more feedforward) network can

have a memory that scales linearly with network size.

Given the acceptable performance level of a random net-

work, and the substantial performance gain in a structured

network, a family of working memory models can be

obtained by training an initially random network to per-

form a memory task. Barak et al. [50��] used this approach to

compare models of varying level of structure to data

collected from monkeys performing delayed vibrotactile

discrimination. They found that both a random reservoir-

type model, and a structured fixed-point model [51] can

match the behavior of the monkeys, but that their firing

rate profiles are either too consistent or not enough con-

sistent across time, compared to the data. An intermediate

model, obtained by training an initially random network,

provided a better match to the experimental findings.

A different route was taken by [52], who trained chaotic

neural networks to do what they were already doing.

Specifically, they chose an arbitrary existing trajectory

of the network, and by making it the target of a training

algorithm stabilized it. Thus, this seemingly random

trajectory became an attracting trajectory and could be

harnessed for functional uses such as measuring elapsed

time. A similar idea was explored by Szatmáry and Izhi-

kevich [53] with an emphasis on exact spike timing. The

authors argued that a random network has, by chance,

many short spatiotemporal patterns that are more likely to

occur than others. By introducing an associative form of

short term plasticity, they showed that these patterns can

be stabilized and spontaneously reactivated, supporting

working memory.

This line of work hinges upon training networks to perform

a certain task without dictating exactly how the network

should do it. It is probable that in some cases training will

result in fixed point mechanisms of working memory, but

other, unexpected, solutions are also possible. Recently,

Sussillo and Barak [54�] developed a method to reverse

engineer such trained networks, revealing the dynamical

structures underlying their operation.

Conclusions
Working memory is vital to our everyday behaviors. At the

same time the neuronal processes underlying working

memory present intriguing computational problems.

Thus it is tempting to find the one particular process

responsible for working memory, and we have reviewed

several noteworthy attempts of doing so. Biological sys-

tems, however, do not have to choose one mechanism.

It is highly possible that many of the mechanisms
www.sciencedirect.com 
mentioned above are utilized by the brain to sustain

working memory, perhaps even affording some degree

of robustness to the failure of one particular mechanism.
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